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COMPUTER PROGRAM FOR EVALUATION OF BLOCH-GRUENEISEN PARAMETERS
OF METALS AND EVALUATION OF ELECTRICAL RESISTIVITY
OF TANTALUM AS A FUNCTION OF TEMPERATURE
by Thor T. Semler and John P. Riehl

Lewis Research Center

SUMMARY

A computer program using nonlinear functional minimization has been written to ob-
tain least squares solutions, from experimental measurements, for the constant terms
of the Bloch-Grueneisen relation

QR/T

px(T) = A(i ¥ x” dx
or 0 -1 -e™

where pT(T) is the "'ideal'' electrical resistivity of metals as a function of temperature,
A is a constant of the metal, T is the temperature in K, and Or is the characteristic
temperature of resistivity.

The metal tantalum has been analyzed by using the code, and a typical result is
fg = 217.54 K and A = 39.95 microohm-centimeters between 10 and 250 K.

INTRODUCTION

A fundamental constant in Ohm's law is the electric resistance of the conductor R.
For a particular conductor of length ! (in cm) and uniform cross-sectional area a (in
cm”), R (in ohms) may be computed as

oy
I
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where p is the electrical resistivity in ohm-centimeters. As the electrical resistance
is a quantity of great interest in both engineering and solid-state physics (refs. 1to 3),
it is important to be able to determine the electrical resistivity and then compute the re-
sistance of a conductor,

The resistivity of a metal is a function of temperature. On approaching very low
temperatures, near absolute zero, the electrical resistivity assumes a constant value
(neglecting the region in which some metals become superconductors) Pos called the re-
sidual resistivity. This quantity Py arises from imperfections, impurities, and strains
in the metal lattice and must be determined for each individual sample.

The total resistivity p may be divided into two portions, the residual resistivity and
the temperature-dependent resistivity pT(T):

p = py + pp(T) (2)

This division is known as Matthiessen's rule (refs. 3 and 4).

It is possible to derive a formula for the temperature-dependent resistivity pT(T)
over a large temperature range from certain approximations about the interactions of
conduction electrons and the metallic lattice vibrations (refs. 5 to 8). The formula (3)
so derived is referred to as the Bloch-Grueneisen relation

65/T
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where A is a constant of the metal and Or is the characteristic temperature of resis-
tivity. The Bloch-Grueneisen relation is widely applied because it provides a good ap-
proximation for the temperature-dependent resistivity for many metals.

Because of the difficulties in the form of the relation, many rule-of-thumb techniques
have been evolved by experimenters to evaluate A and OR from experimental data. Un-
fortunately, many of these rule-of-thumb techniques are rather crude (ref. 4).

The computer program described in the section ANALYSIS allows one to compute in
the least-squares sense the best values of A and OR from all the experimental data one

might wish to use. This computer program is then used to obtain values of A and fr
for metallic tantalum.



ANALYSIS

Given values of p that have been measured as a function of temperature, one
would like the values of Or and A which are 'best' in the least-squares sense. Th%s
means that one must form the function f(A,¢g) = ? [pT,i,measured - pT,i,calcula‘ﬂ:ecﬂ
and minimize it by the variation of Or and A.

By the rules of ordinary calculus, f(A, g) without constraint obtains a local minimum
or reaches a saddle point when the gradient Vf(A,g) = 0 at particular values of A and
6. For those functions I(x,p) that are linear in p the gradient requirement produces a
set of simultaneous linear equations. But for functions that are nonlinear in p, this re-
quirement is not easily met. One is confronted with a set of nonlinear simultaneous
equations in p to be solved. Such is the case for the Bloch-Grueneisen equation. Iis
gradient has components

NDP 6R/T;
of T. 54
—_ = =9 pT(Ti) - A 1 X ax
oA bR (- )1 - )
i-1 0
5 o0r/T;
<_rI_‘1_> X5 dx
or e* - (1 - e %)
0
ND
2 or/T;
of Ti ° x5 dx
5" = - pT(Tl) -Al—
0 or (X - (1 -e%
i=1 0
or/T;
T2 5
54 _L X~ dx + A
g0 E&E-n1-e¥ T < or/Ty
RJ, e

where NDP is the number of data points.



The second component was arrived at by using the chain rule and Leibnitz's rule, which

is, if F(x) = -/g; (;”)(X) f(x,y)dy is continuously differentiable, then

Y(x)
Fr(x) = / 3 5x,y)dy - 1(x, 9(x)) - @'(x) + £(x, Y(x) * ¢'X)
@

X) 0x

To accomplish the unconstrained function minimization, the method of Fletcher and
Powell was employed (ref. 9). The Fletcher and Powell algorithm is a modification of a
method of Davidon (ref. 10). I is a powerful and general method for finding the local
minimum of a general function f(x).

Central to the method is a symmetric positive deﬁr_x}te matrix fi which is updated
at each iteration i. The current direction of motion Si is supplied by 9{’1 when it is
multiplied with the current change gradient vector. An iteration is described by the
following: If fo is any positive definite matrix, usually the identity matrix 4, on the
first iteration only, then

Si = —.?tain(X) §=§i

Choose a = 0 by minimizing f('ffi + a§i); this straight line minimization is done
with cubic interpolation:

o) -
= e T, = VIR, ) V)
1’71
and
g - ik
1 ~ -
SPEAR

%;i being the transpose of '371.
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The numerators of .qli and #; are both matrices, while the denominators are scalars.
Fletcher and Powell (ref. 9) prove the following:
(1) The matrix #] is positive and definite for all i. As a consequence, the method

will always converge since

A ey

d - — o—pe
- f(X; + as)) | a=0 = ~ViE) #, Vi(x)<0

That is, the function f is initially decreasing along the dire(ii:ion §i‘ So that the func-
tion can be decreased at each iteration by minimizing along Si' _ N B
(2) When the method is applied to the quadratic matrix equation q(x) = a + bX + x 4%

and X is a vector of n dimensions,
N (a) The directio—ns -éi (or equivalently -(;i) are o conjugate, that is,
S.1 S.=0 for i # j. This condition leads to a minimum in n steps.

(b) The matrix ‘%ﬂi converges to the inverse of the Hesisian, that is, the matrix
of second partial derivatives after n iterations, gfn = o ~. When applied to a gen-
eral function f(§), fl tends to the inverse of the Hessian evaluated at the minimum.

The Fletcher-Powell algorithm is represented by the flow chart in figure 1.

CALCULATION OF BLOCH-GRUENEISEN RELATION

The integral portion of the Bloch-Grueneisen relation was calculated by using a mod-
ified Simpson's rule integration scheme. This scheme, programmed as subprogram
SIMPS1, adapts to regions where more points are required to obtain an accurate result.
Had the integral been too expensive (in terms of computer time) to compute, a spline ap-
proximation to tabular results of the integral could have been made. It was our experi-
ence that the Bloch-Grueneisen relation and the ensuing least-squares function could be
calculated in very little time by using the modified Simpson's rule routine.

In the program the exponent 5 of equation (3) may be varied, as indicated in the com-
ments card. This permits the user to use other than a fifth-order Bloch-Grueneisen
relation. Input is described in appendix A. A flow chart of the main program is shown
in figure 2. A listing of the program is given in appendix B.

DATA USED IN EVALUATION OF TANTALUM

Experimental measurements of the electrical resistivity of the metal tantalum have
been analyzed by using this code. Only experimental values of the electrical resistivity



in the temperature region from above 0 K (actually 10 K as tantalum is a superconductor)
to about 400 K have been used in the program. The values have been taken from this re-
gion since the least-squares fit of the parameters is relatively insensitive to data outside
the range 0 K to a few times Or K.

Cox Data in Temperature Range 77 to 373 K

Cox in 1943 performed a series of experiments to determine both the thermal and
electrical conductivities of tungsten and tantalum (ref. 11). This series of experiments
yielded three values of the electrical resistivity of tantalum.

The sample used was a tantalum wire about 40 centimeters long and about 0. 0254
centimeter in diameter. The wire was aged by passing as high a current as possible
through it without evaporating it. The tantalum sample was aged at both 1800° and
2000° C for a total time of 2750 hours. The resistance at zero power input was plotted
at a function of aging time. The resistance decreased rapidly at first and finally reached
a constant value; at that point, aging was ceased. The chemical purity quoted for the
sample was 99.9 percent.

After aging, the sample was immersed in baths of boiling liquid nitrogen, ice water,
and boiling water, readings of voltage and current across the sample were taken, and the
resistivity was computed; these data are given in table I.

White and Woods Data in Temperature Range 10 to 295 K

White and Woods, in a series of experiments to determine the electrical and thermal
resistivity of the transition elements, report 21 values of the ideal resistivity of tantalum
(ref. 12). These results were obtained by subtracting the residual resistivity from the
total resgistivity of the sample at a temperature, and they are shown in table II.

The specimen was mounted in a cryostat. One end of the specimen was soldered to a
copper post, and a specimen heater was attached to the other end. Copper wires were
attached to intermediate points of the rod to act as electrical potential leads for the resis-
tivity measurements. The specimen was surrounded by low-pressure helium gas to pre-
serve temperature equilibrium in the cryostat.

The purities of the three samples of tantalum used are quoted as 99.9 percent,
""high'', and 99.9 percent. All samples were vacuum annealed to remove as much work
hardening as possible.

White and Woods suggest that the electrical resistivity of tantalum at lower temper-
atures follows more nearly a T3' 8 proportionality than a T5 proportionality. However,



in the section of their report devoted to the error analysis of the electrical resistivity
measurements they indicate the difficulties in determining the low-temperature ideal
resistivities.

RESULTS AND DISCUSSION

The program was executed by using 19 of White and Woods experimental values.
This involved a temperature range from 10 to 250 K. The resultant values of the param-
eters were A = 39.95 microohm-centimeters and fg = 217.54 K. The resultant fit of
the calculated data to the experimental points is shown in figure 3. It can be seen that
the agreement is excellent. The tabular results are shown in appendix C.

The three values of Cox were analyzed by using the code. This involved a temper -
ature range of 77.3 to 373.4 K. The result of this analysis were A = 39.51 microohm-
centimeters and Og = 210.77 K. The resulting fit of the data is in figure 4.

Because of the rather limited nature of the Cox data, both the White and Woods data
and the Cox data were analyzed together, The resulting fit is shown in figure 5. It can
be clearly seen that the Cox data appear higher than the White and Woods data. This in-
dicates either that the residual resistivity of the Cox samjple had not been subtracted
from the individual values or that the sample had been insufficiently annealed. Thus, the
Cox data have been rejected in following the analysis.

As an illustrative example of the utility of the code, the White and Woods data have
been analyzed parametrically by using the highest temperature involved as a parameter.
The lowest temperature in all these cases was 10 K. The results are shown in figures 6
and 7. The results are tabulated in table III. They show both A and Or increasing to
their asymptotic values. These are typical results for metallic samples (ref. 4). The
characteristic temperature of resistivity R is not to be confused with 8D the Debye
characteristic temperature (ref. 13).

It should be indicated at this point that while these results might be obtained by ex-
tensive hand calculation, the results shown were obtained in a fraction of a minute by an
IBM 7094 -II computer.

SUMMARY OF RESULTS

A computer program was written for evaluation of Bloch-Grueneisen parameters of
metals and evaluation of electrical resistivity of tantalum as a function of temperature,
and the following results were obtained:




1. The values of the Bloch-Grueneisen parameters for the data of White and Woods
were a constant of the metal A = 39.95 microohm-centimeters and a characteristic
temperature of resistivity bR = 217.54 K over the temperature range from 10 to 250 K.

2. The results of Cox apparently were not adjusted to ideal resistivity values.

3. When the Bloch-Grueneisen parameters were plotted as a function of the highest
temperature used, for tantalum, they reached their asymptotic values at roughly a tem-
perature of bR

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, April 19, 1971,
129-02.



APPENDIX A

PROGRAM DESCRIPTION
Program Input Data

The card input to the program consists of a temperature Tl, pT i) the source of the
data, and the first guess for A and OR- The format for these cards is 2F10. 0,3%, A6.
The user supplies as many cards with T, P i and the source as needed. The last
card contains the first guess for A and Or with the field for the source left blank.

This card causes the start of the least-squares curve fit. If the user wants the preceed-
ing values of A and fr as first guesses, the last card should be left entirely blank.

The user may add coding of his own, starting after statement number 7 (card num -
ber 37). By punching END on a data card starting in card column 24, the user may exe-
cute this coding. This END card causes the program to transfer to statement 7.

Program OQutput

The program output consists of a tabulation of the input data along with chi’ the
calculated value of PTi as defined by the Bloch-Grueneisen relation, and the difference
between Pe T and PT i The values of A, OR> and the sum of the differences sguared

are also prmted An example of this output is found in appendix C.
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APPENDIX B

FORTRAN LISTING OF PROGRAM AND OUTPUT

CUMMUN /BLUCK/ TLLOU) »RHC(10G) RHCCIL00), 1
COMMON /SPACE/ WORK(1U)

COMMON FESTIM/ EST.EPSoLIMIT,,IER

EATCRNAL FAT

DIMENSION GRAD{(2) ,» X{2) s SCURCE(100})
EQUIVALENCE {X{1) 4A)» (X{2) +THETA}

DATA BLANK/LH /

VDATA END/3HEND/

DATA N/2/
WRITE (6,8)
I=]

READ (5,12} T(L),RHCU{LI} »SOURCE(I)
IF (SOUKCE(I)-BLANK) 3.4,3

CONTINUE

1F {SCOURCE(I}EQ.END) GL TO 7

I=1+1

6O TU 2

LONTINLE

IF {T4I)EQe0es) GG TO 5

MAKE A FIRST GUESS AT A AND THETA
A=T(1)

THETA =RHO {1}

CONTINUE

I=]~1

CALL THE FLETCHER - POWELL SUBROUTINE
CALL FLTPWL {(FAT;Ny;X,VAL,GRAD}

IF (IERNE-U) WRITE (6,9) IER

WRITE (6,41)

DO 6 J=Ll,l

DIF=RHO{J)I-RHOC ( J)

WRITE {(6,13) SOURCE(J) T J)yRHO(J)sRHOC(J),DIF
CUNTINUE

WRITE (6,10)

wR1TE {(6,14) A,THETA,VAL

WRITE (6+8)

GU TO 1

CONTINUE

PEKFURM ANY OTHER CALCULATICNS HERE
sTop

FORMAT (iH1)
FORMATY (LOX,4HIER=,12)

FORMAT (LHK 24X sLHALOXSHTHETA,8X,23HSUM CF (DIFFERENCES }*%2})
FORMAT (1HK,16X;6HSOURCE,L7TX11HTEMPERATURE, 13Xy 3HRHO, 12Xy 14HRHO C

LALCULATED ¢8X,1UHDIFFERENCE)
FORMAT (2F1lUu.093X,A6)
FORMAT (1L7XsA6,TX34F20.6)
FORMAT (1lOX,3F20.6)

END

PPl PPPPrPEPrPrPPRPPRPPRPEPEPD>PPDDR

VO wd N
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SUBROUTINE FAT (N,QsVLL,GRDD)

THLS SUBRUUTINE CALCULATES THE LEAST SQUARES FUNCTION F(X)
AND THE GRADIENT QOF THE SAME

IN THIS PART X{1l)=A », X(2)=THETA

COMMON /BLOCK/ T{1UUG) sRHG(100) »BGR{LUO I, NCASES
CUMMON /EXPK/ K

DIMENSIUN X(2), GROD(1), Q1)+ GRAD(2)
EXTERNAL FUNKY

DO 1 I=1¢N

X(I)=Q(I)

JOKE =0

GO TO 2

ENTRY BLAST(Z,Y,VLL)

X{l)=2

X{2)=Y

JUKE=1

CUNTINUE

VAL=0.

DO 3 I=1,2

GRAD (1) =0.

AK=K

DO 4 I=1,NCASES

CALCULATE THE BLOCH — GRUENEISEN RELATIONSHIP
X20TI=X(2) /T (1)

TIOX2=(T(L1)/X(2)) **K
XX=SIMP51 {00 ¢ X2DTI »FUNKY, L)

BGR{I }=X{1)*TIDX2%XX

COMPUTE THE UIFFERENCE BETWEEN THE DATA AND THE Bo.GeRos
DIF=KHO{I)-BGR{I)

VAL=VAL+D IF*%x2

TRANSFER ARUUND THE UNWANTED GRADIENT CALCULATIONS WHEN JOKE IS 1
IF {(JOKE.EQel}) GU TO 4

DIF=2.%DIF

CALCULATE THE COMPUNENTS OF THE GRADIENT (GRAD(1)} AND GRAD(2}}
GRAD (1) =GRAD (1) -DIF*TIDX2 *XX

EXPL=EXP(X2DTIL)

EXPS=(EXPL¥+le FEXPL—=246) *T(I)

GRAU{ 2} =GRAD (2} + {AK*BGR{L I/ X(2}-X{(1) JEXPS )} *=DIF
CONTINUE

viL=VAL

IF (JOKE«EQe1l) RETURN

DO 5 II=1,2

GROD (I I)=GRADI(II)

RETURN

END

FUNC TION FUNKY (X)
THIS FUNLTIUN CALCULATES THE INTEGRAND IN THE BeGeRoe
CUMMON /EXPK/ K

IF (X.tEQe0s) GO TCO 1
EXPLl=EXP(X)
FUNKY=EXPL+le /EXPL-2,
FUNKY=X%%K/F UNKY
RETURN

FUNKY =0,

RETURN

END

DO EPrLDE PO ODDEZODDODODEDDEOW®

OO0 OO0
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=t o
7{34)@«4@~U1&k»ﬁ9w

s
Y



[N e

aFeNeolalalalelaRalaRalafoNalalalalalslelalsloNalfsEalalalsieolalolalsNasRalaNelalaEaReR el a R ol ol

12

BLOCK DATA

CUOMMON /7ESTIM/ EST.EPS,LIMIT,IER

CUMMUN JEXPK/ K

THE ORDER OF THE BLOCH-GRUENEISEN RELATIONSHIP MAY BE CHANGED.
T0 DD SO,CHANGE THE VALUE OF K IN THE FOLLOWING DATA STATEMENT.
UATA K/b/

DATA ESTHEPS,LIMIT/LeE~251.E-5,1C00/

END

SLRRULTINE FLTPwWL

PLRPUSE
TO FIND A LOCAL PMINIMUM OF A FUNCTION UF SEVERAL VARIABLES
8Y THE METHOD OF FLETCHER AND POWELL

LSAGE
CALL FLTPWLIFUNCT sNXoFG)

DESLRIPTION UF PARAMETERS

FUNCT — USER-WRITTEN SUBROUTINE CONCERNING THE FUNCTION TO
BE MINIMIZED. IT MUST BE OF THE FORM
SUBRUUTINE FUNCT (NyARGoVAL,GRAD}
AND MUST SERVE THE FOLLCWING PURPOSE
FUR EACH N-DIMENSIONAL ARGUMENT VECTOR ARG,
FUNCTION VALUE AND GRADIENT VECTOR MUST BE COMPUTED
ANDs, ON RETURN, STORED IN VAL AND GRAD RESPECTVTIVELY

N -~ NUMBER OF VARIABLES

X ~ VECTOR CF DIMENSION N CONT AINING THE INITIAL
ARGUMENT WHERE THE ITERATION STARTS. UON RETURN,
X HOLDS THE ARGUMENT CORRESPONDING TO THE
COMPUTED MINIMUM FUNCTIGON VALUE

F - SINGLE VARIABLE CONTAINING THE MINIMUM FUNCT ION
VALUE ON RETURNs IeEs F=F(X]),
G - VECTOR COF DIMENSION N CONT AINING THE GRADIENT

VECTOR CCRRESPONDING TO THE MINIMJUM ON RETURN,
[eEo G=G(X)o

IS AN ESTIMATE OF THE MINIMUM FUNCTION YALUE.
TESTVALUE REPRESENTING THE EXPECTED ABSCLUTE ERROR.
A REASONABLE CHOICE IS 1u*¥{-6)y [o.E.

SOMEWHAT GREATER THAN 10**¥(-D), WHERE D IS THE
NUMBER OF SIGNIFICANT DIGITS IN FLOATING POINT
REPRESENTATICN.

MAXI MUM NUMBER OF ITERATIONS.

ERRUR PARAMETER

IER = U MEANS CONVERGENCE WAS OBTAINED

IER = 1 MEANS NU CONVERGENCE IN LIMIT ITERATIONS
fER ==1 MEANS ERRCRS IN GRAUIENT CALCULATION

IER = 2 MEANS LINEAR SEARCH TECHNIQUE INDICATES
IT IS LIKELY THAT THERE EXISTS NO MINIMUM.

H - WORKING STORAGE OF DIMENSION N*{N+t7)/2.

£ST
EPS

LIMIT
{EK

KEMARKS
1) THE SUBROUTINE NAME REPLACING THE DUMMY ARGUMENT FUNCT
MUST BE DECLARED AS EXTERNAL IN THE CALL ING PRUOGRAM,

mmm

mm M
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[1) IER IS SE¥T TG 2 [F o STEPPING IN ONE OF THE COMPUTED
DIRECTIONS: THE FUNCTION vwIttL NEVER INCREASE WITHIN
A TOLERAGLE RANGE OF ARGUMENT.
IER = 2 MAY OCCUR ALSO IF THE INTERVAL WHERE F
INCREASES IS SMALL AND THE INITIAL ARGJMENT WAS
RELATIVELY FAR AWAY FRCM THE MINIMUM SUCH THAT THE
MINIMUM WAS COVERLEAPED. THIS IS DUE TO THE SEARCH
TECHNIQUE wHICH DCUBLES THE STEPSIZE UNTIL A POINT
[S FOUND WHERE THE FUNCTION INCREASES.

SLBROUTINES AND FUNCTION SUBPROGRAMS REQU IRED
FUNCT

ME THOD
THE METHUO IS DESCRIBED IN THE FCLLOWING ARTICLE
Re FLETCHER AND MedsDeo POWELL, A RAPID DESCENT METHUD FOR
MINIMIZATION,
COMPUTER JOURNAL VGL.6 s ISSe 25 1963, PP.163-168.
THLS SUBROUTINE IS A MUDIFICATIQON OF THE FMFP PRUGRAM FROM THE [8M
SCIENTIFIC SUBRUUTINE PACKAGE

SLBROUTINE FLTIPWL (FUNCToN X F 4G}
CUMMUN /ESTIM/ EST,EPS,LIMIT,IER
COMMON /ZSPACE/ HI(1)

DIMENSIONED DUMMY VARIABLES
DIMENSIUN X{1}, G(1)

COMPUTE FUNCTION VALUE AND GRADIENT VECTOR FOR INITIAL ARGUMENT
CALL FUNCT (NgXsF oG}

RESET ETERATION COUNTER AND GENERATE IDENTITY MATRIX
TER =0
KOUNT=0
N2=N+N
N3=NZ+N
N31l=N3+1
K=N31
DO 4 J=1sN
H{K) =1,
NJ=N=-J
IF (NJ) 545,2
DU 3 L=1.NJ
KL=K+L
H{KL) =0
K=KL+1

START ITERATION LCOP
KOUNT=KUUNT+1

SAVE FUNCTION VALUE, ARGUMENT VECTUR AND GRADIENT VECTOR
ULDr =F
DO F J=1,N
K=n+Jd
H{K} =G {J)
K=K+N
HIK)=Xx(J)

VDETERMINE DIRECTICN VECTCR H
K=Jd+N3
I1=0e

MMM T AT RN RTN T
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DO 8 L=1,N
T=T=G{LI*H(K)
IF {L=J) 641.7
K=K+ N=L

GO T 8

K=K+1

CONTINUE
H{J1=T7

LHECK WHETHER FUNCTION WILL DECREASE STEPPING ALONG H.
DY=0e
HNRM =0,
GNRM =0,

CALLULATE DIRECTIONAL DERIVATIVE AND TESTVALUES FUR DIRECTION
VeC TOR H AND GRADIENT VECTOR Ge

DO 10 J=1eN

HNRM =HNRM+ABS(H{ J1)

GNRM=GNRM+ABS(GLJ))

DY=DY+H{JII*G {J)

REPEAT SEARCH IN DIRECTION UOF STEEPEST DESCENT IF DIRECTIONAL
DERIVATIVE APPEARS TC BE POSITIVE OR ZEROG.
IF (DY) 1145454

REPEAT SEARCH IN DIRECTICN OF STEEPEST CESCENT I[F DIRECTIUN
VECTOR H IS SMALL COMPARED TU GRADIENT VECFOR G.
IF {rINRM/GNRM~EPS) 54:54,12

SEARCH MINIMUM ALCNG DIRECTICON H

SEARCH ALONG H FCR PCSITIVE DIRECTIONAL DERIVATIVE
Fy=F
ALFA=2.%{EST-F) /DY
AMBDA=1.

USE ESTIMATE FOR STEPSIZE CNLY IF IT IS PUSITIVE AND LESS THAN
le OTHERWISE TAKE lo AS STEPSIZE

IF (ALFA) 15,15,13

IF (ALFA=-AMBDA} 14,15,15

AMBUA=ALFA

ALFA=C,

SAVE FUNCTION AND DERIVATIVE VALUES FOR OLD ARGUMENT
FX=FY
DX=DY

STEP ARGUMENT ALCNG H
DO 17 I=1,N
XKLL ) =x{1 )+ AMBDA*H (1)

COMPUTE FUNCTION VALUE AND GRADIENT FOR NEW ARGUMENT
CALL FUNCT (NeXeF oG)
FY=F

COMPUTE DIRECTIUNAL DERIVATIVE DY FCOR NEW ARGUMENT. TERMINATE
SEARCHg IF OY IS POSITIVE. IF DY IS ZERD THE MINIMUM IS FOUND
DY=Ue
DO 18 [=1.N
DY=DY+G{I bxH {1}
LF (DY) 19539422
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OO OON

3u

3z

33
34
35

36
37
38

TERMINATE SEARCH ALSC IF THE FUNCTIGN VALUE INDICATES THAT
A MINIMUM HAS BEEN PASSED
IF (FY-FX) 20,22,22

REPEAT SEARCH AND DCOAUBLE STEPSIZE FOR FURTHER SEARCHES
AMBDA=AMBOA+ALFA
ALFA=AMBDA

END OF SEARCH LOCP

TERMINATE IF THE CHANGE IN ARGUMENT GETS VERY LARGE
IF (HNRM*AMBDA-1.ELU} 16,1621

LINEAR SEARCH TECHNIGQUE INDICATES THAT NO MINIMUM EXISTS
LER=2
RETURN

INTERPULATE CUBICALLY IN THE INTERVAL DEFINED BY THE SEARCH
ABOVE AND CUMPUTE THE ARGUMENT X FOR WHICH THE INTERPOLATION
POLYNUMIAL IS MINIMIZED

T=0.

1F (AMBDA) 24439,24

I=3.%{FX-FY} /AMBDA+DX+DY

ALFA=AMAXL (ABS{Z) +ABS(DX} s ABS{DY))

DALFA=Z/ALFA

DALFA=DALFAXDALFA-DX/ALFAXDY/ALFA

IF (DALFA) 544925,25

WALFAXSQRT(DALFA)

ALFA=DY-DX+Wt+ i

IF (ALFA) 264.274206

ALFA={DY-Z+W) /ALFA

GU TO 28

ALFA=(24DY=-w} /{ 2+ DL+ 2+DY)

ALFA=ALFA®AMBDA

DU 29 1=14N

X{Li=X{I)+{(T-ALFA)*H ()

TERMINATE , IF THE VALUE OF THE ALTUAL FUNCTION AT X IS LESS
THAN THE FUNCTIUON VALUES AT THE INTERVAL ENDS. OTHERWISE REOUCE
THE INTERVAL BY CHOCSING GNE END-POINT EQUAL TO X AND REPEAT
THE INTERPOLATION., WHICH END—-POINT IS CHOOSEN DEPENDS ON THE
VALUE OF THE FUNCTION AND ITS GRADIENT AT X

CALL FULNCT (NsX,F »G)
IfF {(F-FX) 30,30,31

IF (F-FY) 39,39,31
DALFA=0Q,.

D0 32 I=1.N
DALFA=DALFA+G{I)*H (I}
iF (DALFA) 33,436,306

IF (F=FX} 35,:34,36

IF (DX-DALFA} 35,39,35
F X=F

DX=DALFA

T=ALFA

AMBDA=ALFA

GO To 23

I+ (FY-F) 383+:37,38

IF (DY-DALFA) 38939538
FY=F

DY=DALFA
AMBDA=AMBDA-ALFA

GO TO 22
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52

[

TEKMINATE, IF FUNCTIGON HAS NOT DECREASED DURING LAST ITERATION
IF (ULDF=F+EPS) 54,40,40

LUMPUTE DIFFERENCE VECTCRS OF ARGUMENT AND GRADIENT FROM
ThO CUNSECUTIVE ITERATICNS

Du 41 J=1,4N

Ko=N+J

HIK =G {Jd)~-H{K)

K+ K

FUK)=X{d)-H{K)
TEST LENGTH OF ARGUMENT DIFFERENCE VECTOR AND DIRECTION VECTOR
IF AT LEAST N ITERATIGNS HAVE BEEN EXECUTED. TERMINATE, IF
BO0TH ARE LeSS THAN EPS

IER =(

1F {KCOUNT=N) 45:42:42

5"":0@

PRIV IN

DO 43 Jd=1,»N

=N+ J

a=H{K}

K=K N

T=T+ABS{H (K} )

L=+ wkHIK)

IF [(HNRM=EPS) 44,44 45

[F {T-EPS) 59,459,445

TERMINATE s IF NUMBER OF ITERATIONS WOULD EXCEED L IMIT
IF (KOUNT=LIMIT) 46,53,53

PREPARE UPDATING OF MATRIX H
ALFA=U .
DU 5G Jd=LsN
K=J+N3
W =Ue
00U 49 L=1sN
KL=N+L
wzWtH LKLY *H (K)
{F {L-J) 47,48,48
#o=KEN-L
G0 TO 49
K=K+1
CONTINUE
Ko=N+J
ALFA=ALFA+wEH (K]
HiJd) =k

REPEAT SEARCH IN DIRECTICN OF STEEPEST CESCENT IF RESULTS
ARE NUT SATISFACTGRY
IF (Z%ALFA) 51,1,51

UPDATE MATRIX H
K=Nsl
DU 52 L=1+N
KL=N2+L
DO 52 Jd=LeN
NJd=Ng+J
HIK) =HI{KI+HIKL) *HINJ) /7 Z-H (L) *H{J}/ALFA
K=K+l
LU TO 5
END ur ITERATICN LOQP
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NU CUNVERGENCE AFTER LIMIT ITERATIONS
[ER =1
RETUKN

RESTURE ULD VALUES OF FUNCTICN AND ARGUMENTS
DO 55 J=1,N
K=N2+J
X{J)=H{K)
CALL FUNCT (NoXoF oG}

REPEAT SEARCH IN DIRECTICN OF STEEPEST DESCENT IF DERIVATIVE
FAILS TO BE SUFFICIENTLY SMALL
IF (GNRM~EPS) 58:58:56

TEST FOR REPEATED FAILURE OF ITERATION
IF (IER) 59,57,57
IER=-1
GO TO 1
IER=0
RETURN
END
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APPENDIX C

EXAMPLES OF PROGRAM OUTPUT

Example 1 - White and Woods Data of 1959

SOURCE TEMPERATURE RHO RHO CALCULATED DIFFERENCE
WHWO59 10.000000 0.003200 0.021020 0.032182
WHWD59 15.000000 0.017000 0.027719 0.329281
WHW359 20.000000 0.051000 C.031382 0.319618
WHW0S59 25.000000 0.120009 0.086670 0.33333)
WHW0O59 30.000000 0.230000 0.183421 0.046579
WHW0OS59 40.000000 0.540000 0.439982 0.340018
WHWOS59 50.000000 0.950000 0.936325 0.013675
WHWO59 60.000000 1.430000 1.436732 -0.,006732
WHW0OS59 70.000000 1.960000 1.954969 -0.024969
WHW0S9 80.000000 2.500000 2.5218593 -0.321853
WHWO59 90.,000000 3.030000 3.038230 -0.038230
WHWOS59 100.000000 3.550000 3.570093 ~0.0200933
WHWD59 120.000000 4.600000 4,615721 -0.015721
WHW359 140.000000 5.600000 5.537964 -0.23796¢%
WHWO59 160.000000 6.650000 6.640883 0.039117
WHW059 180.000000 7.650000 7.628653 0.021347
WHW059 200.000000 8.600000 8.504656 -0.0204655
WHW059 220.000000 9.600000 9.571464 0.328536
WHW0O59 250.000000 11.000000 11.028536 -0.028535
A THETA SUM DF (DIFFERENCES)*%*2
39.,95017%6 217.537354 0.009226

Example 2 - Cox Data of 1943

SQURCE TEMPERATURE RHO RHO CALCULATED DIFFERENCE
MCDX63 77.330000 2.460000 2.464481 -0.024481
MCOX43 273.200001 12.410000 12.389841 0.020153
MCOX&3 373.400002 17.180000 17.193873 -0.013873
A THETA SUM OF (DIFFERENCES)*%2
39.512384 210.770609 0.000619
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Example 3 - Cox Data of 1943 and White and Woods Data of 1959

SOURCE
WHWOS53
WHW0O59
WHWQ59
WHWO059
WHW(O59
WHW359
WHWD59
WHW0O59
WHWO59
WHWD59
WHW059
WHWO53
WHWO059
WHW359
WHWO59
WHWO59
WHWO059
WHWD59
WHWO59
MCOX43
MCOX43
MCOX43

A
41.621598

TEMPERATURE
10.000000
15.000000
20.000000
25.000000
30.000000
40.000000
50.000000
60.000000
70.000000
R0.000000
30.000000

100.000000

120.000000

140.000000

160.000000

180.000000

200.000000

220.000000

250.000000
77.330000

273.200001

373.400002

THETA
223.468170

RHO
0.003200
0.017000
0.051000
0.120000
0.230000
0.540000
0.950000
1.430000
1.960000
2.500000
3.030000
3.550000
4.600000
5.600000
6.650000
7.650000
8.600000
3.600000
11.000000

2.450000
12.410000
17.180000

{DIFFERENCES) *%2

0.114080

RHO CALCULATED

0.020929
0.007037
0.028769
0.2802938
N0,171399
0.478832
0910253
l.411158
1.943838
2.487599
3.032195
3.572969
4.637077
5.677648
A.638330
T.733241
7,695818
F.678715
11.139177
2.3%42040
12.259842
17.045341

DIFFERENCE
0.002271
0.323963
0.022231
0.039702
0.258001
0.351168
0.039747
0,018842
0.016162
0.312401

-0.022135

-0.222959

~0.037077

-0.,277643

~0.03%8330

~0.353241
~0.035818
~0.278715

-0.133177
0.117950
0.150158
0.134659
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TABLE II. - WHITE AND WOODS

DATA OF 1959

TABLE 1. - COX DATA OF 1943

Temperature, | Total electrical
K resistivity,
P

pohm -cm
77.33 2.46
273.2 12.41
373.4 17.18

TABLE III.

- BLOCH-GRUENEISEN CONSTANTS AS FUNCTION

OF MAXIMUM TEMPERATURE

Temperature, | Total electrical Maximum temperature, | Constant of metal, | Characteristic temperature
K resistivity, K A, of resistivity,
0, pohm-cm f5)
pohm-cm K

10 0.0032 50 27.130 185. 664
15 . 017 60 31.233 194. 1386
20 .051 70 34.525 202. 214
25 .12 80 36.568 207.447
30 .23 90 37.530 209.99%
40 .54 100 37.905 211.035
50 .95 120 38.588 213.063
60 1.43 140 38.1726 213.490
70 1.96 160 39.372 215.580
80 2.50 180 39.771 216.932
90 3.03 200 39.813 217.056

100 3.55 220 40.010 217.1758

120 4.60 250 39.950 217,537

140 5.60

160 6. 65

180 7.65

200 8. 60

220 9.6

250 11.0

273 121

295 13.1




Start with an
initial guess
for xg

Set i=0
Hi=1

Yes

Reinitialize _
with a new x,

Calculate f(
and Vfx) =

)

il
9

[

Find g where a

determines
min f(xi - aHigi)
a

Evaluate G, = o;H;3;,
;i+1 = YI + (_f', and
Yi = VﬂXi+1) - Vf(fi)

i<N?
N = max no. of
iterations to
be altowed

Assume no
convergence;
stop

i=i+1

Hipp= Hj+ Aj+ By

Are

convergence No

criteria
met?

Apply
other tests
to determine
if search is
to end

Figure 1. - Fletcher-Powell algorithm.



Read Ti'
Pir and
source;

j=i+1

Source;
= end

Statement 7: do
anything else the
user may want

8p to previous
values

Set A and A=T, and
OR = P

Call FLTPWL; get
A, Bp, and least-
squares value

DIF=p

i~ Pej

Write sou rca,
Tj 0j pcj DI

Write A, 8, and

least-squares value

Figure 2. - Main program.
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Total electrical resistivity, p, pohm-cm

Total electrical resistivity, p, uohm-cm

12.00

10.00 1

3.001

6.007

2.007

o Experimental
Calculated

18,00+

16,00+

14.00+

10,00+

2.00+

30,00 60.00  90.00 120.00 150,00 180.00 210,00 240,00  270.00  300.00
Temperature, K

Figure 3. - Fit of White and Woods data.

a Experimental
Calculated

0

40.00  80.00 120,00 160.00  200.00  240.00  280.00 320,00  360.00 400,00
Temperature, K

Figure 4. - Fit of Cox data.



Total electricaf resistivity, p, pohm-cm.

18.00 T
16.00+
14,00
12.00)
10.00.
8.004
6.00
400

2.00 +

Experimental
[ Cox (1943)

0 White and Woods (1959)
Calculated

—+
+

iz}
Li:]

20,00 80,00  120.00 160,00 200,00  240.00 280,00 320,00  360.00  400.00
Temperature, K :

Figure 5, - Fit of Cox data of 1943 with White and Woods data of 1959.
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45,007

Constant of metal, A

25.00 + : t } } + : } } {
0 25.00 50.00 75.00 100. 00 125.00 150,00 175.00 200.00  225.00  250.00
Temperature, K

Figure 6. - Constant of metal as function of highest temperature used.

225.00 7

200.00 +

ature of resistivity,
bR

Characteristic temper-

0 .00 50.00 7500 10000 125.00 150.00 175.00  200.00  225.00 250,00
Temperature, K

175.00

Figure 7. - Characteristic temperature of resistivity as function of maximum temperature used.
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